The swift and precise detection of vehicles holds significant research significance in intelligent transportation systems (ITS). However, current vehicle detection algorithms encounter challenges such as high computational complexity, low detection rate, and limited feasibility on mobile devices. To address these issues, this paper proposes a lightweight vehicle detection algorithm for YOLOv7-tiny called Ghost-YOLOv7. The model first scales the width multiple to 0.5 and replaces the standard convolution of the backbone network with Ghost convolution to achieve a lighter network and improve the detection speed; secondly, a Ghost bi-directional feature pyramid network (Ghost-BiFPN) neck network is designed to enhance feature extraction capability of the algorithm and enrich semantic information; thirdly, a Ghost Decouoled Head (GDH) is employed for accurate prediction of vehicle location and class, enhancing model accuracy; finally, a coordinate attention mechanism is introduced in the output layer to suppress environmental interference, and the WIoU loss function is employed to enhance the detection accuracy further. Experimental results on the PASCAL VOC dataset demonstrate that Ghost-YOLOv7 outperforms the original YOLOv7-tiny model, achieving a 29.8% reduction in computation, 37.3% reduction in the number of parameters, 35.1% reduction in model weights, and 1.1% higher mean average precision (mAP), while achieving a detection speed of 428 FPS. These results validate the effectiveness of the proposed method.


翻译:快速、准确地检测车辆对智能交通系统 (ITS) 具有重要的研究意义。然而,当前的车辆检测算法面临着高计算复杂度、低检测率和在移动设备上受限的可行性等问题。为了解决这些问题,本文提出了一种基于 YOLOv7-tiny 的轻量级车辆检测算法 Ghost-YOLOv7。该模型首先将宽度倍数缩小到 0.5,并使用 Ghost 卷积替代主干网络的标准卷积,以实现更轻的网络和提高检测速度;其次,设计了 Ghost 双向特征金字塔网络 (Ghost-BiFPN) 颈网络,以增强算法的特征提取能力和丰富语义信息;第三,使用 Ghost Decouoled Head (GDH) 进行车辆位置和类别的精确预测,提高模型的准确性;最后,在输出层引入坐标注意机制来抑制环境干扰,并使用 WIoU 损失函数进一步增强检测精度。在 PASCAL VOC 数据集上的实验结果表明,Ghost-YOLOv7 优于原始的 YOLOv7-tiny 模型,计算量减少了 29.8%,参数数量减少了 37.3%,模型权重减少了 35.1%,平均精度 (mAP) 提高了 1.1%,同时实现了 428 FPS 的检测速度。这些结果验证了所提出方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员