Full system "end-to-end" measurements in physical testbeds are the gold standard for network systems evaluation but are often not feasible. When physical testbeds are not available we frequently turn to simulation for evaluation. Unfortunately, existing simulators are insufficient for end-to-end evaluation, as they either cannot simulate all components, or simulate them with inadequate detail. We address this through modular simulation, flexibly combining and connecting multiple existing simulators for different components, including processor and memory, devices, and network, into virtual end-to-end testbeds tuned for each use-case. Our architecture, SimBricks, combines well-defined component interfaces for extensibility and modularity, efficient communication channels for local and distributed simulation, and a co-designed efficient synchronization mechanism for accurate timing across simulators. We demonstrate SimBricks scales to 1000 simulated hosts, each running a full software stack including Linux, and that it can simulate testbeds with existing NIC and switch RTL implementations. We also reproduce key findings from prior work in congestion control, NIC architecture, and in-network computing in SimBricks.


翻译:物理测试床的完整系统“ 端到端” 测量是网络系统评估的金标准,但往往不可行。当物理测试床没有可用时,我们经常转而进行模拟评估。 不幸的是,现有的模拟器不足以进行端到端评价,因为它们不能模拟所有组件,或不能以不够详细的方式模拟它们。 我们通过模块模拟、灵活结合和连接不同部件(包括处理器和内存、装置和网络)的多种现有模拟器,将其连接到针对每个使用案例的虚拟端到端测试床。 我们的建筑、 SimBricks 将定义明确的可扩展性和模块化的组件界面、 高效的本地和分布模拟通信渠道以及共同设计的高效同步机制, 用于准确的模拟器。 我们向1000个模拟主机展示了SimBricks 比例, 每个主机都运行包括Linux在内的全套软件堆, 它可以模拟测试床, 并转换现有的NIC 和RTL 执行程序。 我们还复制了先前在SimBricks 中进行的挤压控制、 和网络内计算工作的关键发现。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
0+阅读 · 2022年8月24日
Arxiv
15+阅读 · 2021年7月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员