We present an alternative approach to the forecasting of motor vehicle collision rates. We adopt an oft-used tool in mathematical finance, the Heston Stochastic Volatility model, to forecast the short-term and long-term evolution of motor vehicle collision rates. We incorporate a number of extensions to the Heston model to make it fit for modelling motor vehicle collision rates. We incorporate the temporally-unstable and non-deterministic nature of collision rate fluctuations, and introduce a parameter to account for periods of accelerated safety. We also adjust estimates to account for the seasonality of collision patterns. Using these parameters, we perform a short-term forecast of collision rates and explore a number of plausible scenarios using long-term forecasts. The short-term forecast shows a close affinity with realised rates (over 95% accuracy), and outperforms forecasting models currently used in road safety research (Vasicek, SARIMA, SARIMA-GARCH). The long-term scenarios suggest that modest targets to reduce collision rates (1.83% annually) and targets to reduce the fluctuations of month-to-month collision rates (by half) could have significant benefits for road safety. The median forecast in this scenario suggests a 50% fall in collision rates, with 75% of simulations suggesting that an effective change in collision rates is observed before 2044. The main benefit the model provides is eschewing the necessity for setting unreasonable safety targets that are often missed. Instead, the model presents the effects that modest and achievable targets can have on road safety over the long run, while incorporating random variability. Examining the parameters that underlie expected collision rates will aid policymakers in determining the effectiveness of implemented policies.
翻译:我们提出了机动车辆碰撞率预测的替代方法。我们采用了数学融资中经常使用的一个工具,即赫斯顿斯托切斯托斯托斯托克挥发波动模型,以预测机动车辆碰撞率的短期和长期演变情况。我们采用了赫斯顿模型的一些扩展,以使之适合模拟机动车辆碰撞率。我们采用了碰撞率波动的暂时性、非不定期性性质,并引入了计算加速安全时期的参数。我们还经常根据碰撞模式季节性的季节性调整估算数值。我们使用这些参数,对碰撞率进行短期预测,并用长期预测来探索一些可信的假设。我们采用短期预测,显示赫斯顿模式中的一些扩展,使之与实现率(超过95%的准确率)和目前道路安全研究中使用的不完善预测模型(瓦西克、萨斯马亚、萨斯马亚-加拉查赫)十分接近。 长期的模型假设表明,降低碰撞率(每年1.83%)的幅度不大,而降低月-月碰撞率的幅度指标。我们使用这些参数,对碰撞率的短期预测,并用长期预测来探明一些可信的情景。在50个比率中,预测中测测算了80比率的死亡率率。