Network meta-analysis (NMA) has been used to answer a range of clinical questions about the preferable intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, NMA applications typically ignore the role that drugs dosage play on the results. This leads to more heterogeneity in the network. In this paper we present a suite of network meta-analysis models that incorporates the dose-effect relationship (DE-NMA) using restricted cubic splines (RCS). We extend the model into a dose-effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect DE-NMA model. We apply the models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We found that all antidepressants are more efficacious than placebo after a certain dose. We also identify the dose level in which each antidepressant effect exceeds that of placebo and estimate the dose beyond the effect of the antidepressants no longer increases. The DE-NMA model with RCS takes a flexible approach to modelling the dose-effect relationship in multiple interventions, so decision-makers can use them to inform treatment choice.
翻译:使用网络元分析(NMA)来回答一系列临床问题,这些问题涉及特定条件的更好干预。虽然药剂的效力和安全取决于剂量的剂量,但NMA应用通常忽视药物剂量对结果的作用。这导致网络中出现更多的异质性。在本文中,我们展示了一组网络元分析模型,其中包括剂量效应关系(DE-NMA),使用限制的立方样(RCS)来进行剂量效应关系(DE-NMA) 。我们将该模型扩大到剂量效应网络元回归,以计算研究水平的异差和具有等级效应的DE-NMA模型中的制剂群体。我们将这些模型应用于关于21种抗抑郁药剂和抑郁安慰剂功效的综合数据网络。我们发现,所有抗抑郁药在服一定剂量后比安慰剂(DE-NMA)更有效。我们还确定了每种抗抑郁效应超过安慰剂的剂量水平,并且估计剂量超过抗抑郁药作用的影响,不再增加。与RCS的DE-NMA模型在多种剂量关系中采用灵活的方法来模拟剂量反应。