Artificial intelligence (AI) research is routinely criticized for its real and potential impacts on society, and we lack adequate institutional responses to this criticism and to the responsibility that it reflects. AI research often falls outside the purview of existing feedback mechanisms such as the Institutional Review Board (IRB), which are designed to evaluate harms to human subjects rather than harms to human society. In response, we have developed the Ethics and Society Review board (ESR), a feedback panel that works with researchers to mitigate negative ethical and societal aspects of AI research. The ESR's main insight is to serve as a requirement for funding: researchers cannot receive grant funding from a major AI funding program at our university until the researchers complete the ESR process for the proposal. In this article, we describe the ESR as we have designed and run it over its first year across 41 proposals. We analyze aggregate ESR feedback on these proposals, finding that the panel most commonly identifies issues of harms to minority groups, inclusion of diverse stakeholders in the research plan, dual use, and representation in data. Surveys and interviews of researchers who interacted with the ESR found that 58% felt that it had influenced the design of their research project, 100% are willing to continue submitting future projects to the ESR, and that they sought additional scaffolding for reasoning through ethics and society issues.


翻译:人工智能(AI)研究因其对社会的实际和潜在影响而经常受到批评,我们缺乏对这一批评及其反映的责任的适当机构反应。AI研究往往不属于诸如机构审查委员会(IRB)等现有反馈机制的管辖范围,后者旨在评估对人体主体的伤害而不是对人类社会的伤害。我们为此开发了伦理和社会审查委员会(ESR),这是一个反馈小组,与研究人员合作,减少AI研究的负面道德和社会方面。ESR的主要见解是作为供资的一项要求:研究人员无法从我们大学的大型AI供资方案获得赠款,直到研究人员完成ESR提案的程序。我们在本篇文章中描述了我们设计和运行ESR(ESR)的第一年,共41项建议。我们分析了ESR对这些建议的总体反馈,发现该小组最常发现对少数群体的伤害问题、研究计划纳入不同的利益攸关方、双重使用和数据中的代表性。与ESR互动的研究人员的调查和访谈发现,58%的研究人员认为,他们已经影响他们未来研究项目的设计,100 %的道德问题,他们愿意通过未来项目来提交ESR。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员