This report demonstrates several methods used to make a self-driving vehicle using a supervised learning algorithm and a forward-facing RGBD camera. The project originally involved research in creating an adversarial attack on the vehicle's model, but due to difficulties with the initial training of the car, the plans were discarded in favor of completing the imitation learning portion of the project. Many approaches were explored, but due to challenges introduced by an unbalanced data set, the approaches had limited effectiveness.


翻译:本报告展示了使用监督的学习算法和前方的RGBD照相机自行驾驶车辆所用的几种方法,该项目最初涉及研究对车辆模型进行对抗式攻击,但由于车辆初始训练困难,计划被丢弃,赞成完成项目的模拟学习部分,许多办法得到了探讨,但由于数据集不平衡所带来的挑战,这些办法效果有限。

1
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
282+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员