As all software, blockchain nodes are exposed to faults in their underlying execution stack. Unstable execution environments can disrupt the availability of blockchain nodes interfaces, resulting in downtime for users. This paper introduces the concept of N-version Blockchain nodes. This new type of node relies on simultaneous execution of different implementations of the same blockchain protocol, in the line of Avizienis' N-version programming vision. We design and implement an N-version blockchain node prototype in the context of Ethereum, called N-ETH. We show that N-ETH is able to mitigate the effects of unstable execution environments and significantly enhance availability under environment faults. To simulate unstable execution environments, we perform fault injection at the system-call level. Our results show that existing Ethereum node implementations behave asymmetrically under identical instability scenarios. N-ETH leverages this asymmetric behavior available in the diverse implementations of Ethereum nodes to provide increased availability, even under our most aggressive fault-injection strategies. We are the first to validate the relevance of N-version design in the domain of blockchain infrastructure. From an industrial perspective, our results are of utmost importance for businesses operating blockchain nodes, including Google, ConsenSys, and many other major blockchain companies.


翻译:作为所有软件一样,区块链节点面临着其基础执行栈中的故障。不稳定的执行环境可能会干扰区块链节点接口的可用性,导致用户停机。本文介绍了N版本区块链节点的概念。这种新型节点依赖于对同一区块链协议的不同实现的同时执行,以符合Avizienis的N版本编程愿景。在Ethereum的上下文中设计和实现了N版本区块链节点原型,称为N-ETH。我们展示了N-ETH能够缓解不稳定的执行环境的影响,并显著增强在环境故障下的可用性。为了模拟不稳定的执行环境,我们在系统调用层面进行故障注入。我们的结果表明,现有的以太坊节点实现在相同的不稳定情况下表现出不对称的行为。N-ETH利用Ethereum节点的多样性实现中可用的这种不对称行为来提供更高的可用性,甚至在我们最激进的故障注入策略下。我们是第一个验证N版本设计在区块链基础设施领域中的相关性。从工业角度来看,我们的结果对于运行区块链节点的企业至关重要,包括Google、ConsenSys和许多其他主要的区块链公司。

0
下载
关闭预览

相关内容

区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
一个牛逼的 Python 调试工具
机器学习算法与Python学习
15+阅读 · 2019年4月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
一个牛逼的 Python 调试工具
机器学习算法与Python学习
15+阅读 · 2019年4月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员