Recommender systems suffer from confounding biases when there exist confounders affecting both item features and user feedback (e.g., like or not). Existing causal recommendation methods typically assume confounders are fully observed and measured, forgoing the possible existence of hidden confounders in real applications. For instance, product quality is a confounder since affecting both item prices and user ratings, but is hidden for the third-party e-commerce platform due to the difficulty of large-scale quality inspection; ignoring it could result in the bias effect of over-recommending high-price items. This work analyzes and addresses the problem from a causal perspective. The key lies in modeling the causal effect of item features on a user's feedback. To mitigate hidden confounding effects, it is compulsory but challenging to estimate the causal effect without measuring the confounder. Towards this goal, we propose a Hidden Confounder Removal (HCR) framework that leverages front-door adjustment to decompose the causal effect into two partial effects, according to the mediators between item features and user feedback. The partial effects are independent from the hidden confounder and identifiable. During training, HCR performs multi-task learning to infer the partial effects from historical interactions. We instantiate HCR for two scenarios and conduct experiments on three real-world datasets. Empirical results show that the HCR framework provides more accurate recommendations, especially for less-active users. We will release the code once accepted.


翻译:如果存在影响物品特性和用户反馈的混淆者,建议系统就会受到令人困惑的偏见,因为存在影响物品特性和用户反馈的混淆者(例如,有或没有),现有的因果建议方法通常假定混淆者得到充分的观察和衡量,避免在实际应用中可能存在隐藏的混淆者。例如,产品质量自影响物品价格和用户评级以来就是一个混乱者,但是由于大规模质量检查的难度,第三方电子商务平台却被隐藏在其中;忽视它可能造成过度建议高价物品的偏差效应。这项工作从因果关系的角度分析和解决问题。关键在于模拟物品特性对用户反馈的因果关系。为了减轻隐藏的混淆效应,在不测量物品价值的情况下估计因果关系是强制性的,但却具有挑战性。为了实现这一目标,我们建议利用隐蔽的 Confounder 清除框架来利用前门调整,将因果分解成两个部分效果,根据调解员的特性和用户反馈,部分效果是独立于隐藏的对用户反馈的因果效应。关键是,对用户反馈的模拟,为减轻隐藏的混淆和可识别的影响,为不那么,在培训期间, HCR 将进行更深入地显示历史实验后期的模拟,我们将进行三期的模拟中会显示的模拟的模拟,将产生部分的模拟。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员