Unlike matrix completion, no algorithm for the tensor completion problem has so far been shown to achieve the information-theoretic sample complexity rate. This paper develops a new algorithm for the special case of completion for nonnegative tensors. We prove that our algorithm converges in a linear (in numerical tolerance) number of oracle steps, while achieving the information-theoretic rate. Our approach is to define a new norm for nonnegative tensors using the gauge of a specific 0-1 polytope that we construct. Because the norm is defined using a 0-1 polytope, this means we can use integer linear programming to solve linear separation problems over the polytope. We combine this insight with a variant of the Frank-Wolfe algorithm to construct our numerical algorithm, and we demonstrate its effectiveness and scalability through experiments.
翻译:与矩阵完成率不同的是,到目前为止,还没有显示任何关于压力完成问题的算法来实现信息理论样本复杂率。 本文为非负性抗拉完成率的特殊情况开发了一种新的算法。 我们证明我们的算法在达到信息理论率的同时,在直线( 数字容忍度) 步数中相融合。 我们的方法是使用我们所构建的 0-1 个特定多功能的测量值来定义非负性抗拉的新规范。 由于规范是用 0-1 个多功能来定义的, 这意味着我们可以使用整数线线性编程来解决多功能线性分离问题。 我们把这一洞察与弗兰克- 沃夫算法的变体结合起来, 来构建我们的数字算法, 我们通过实验来展示其有效性和可扩展性。