We propose cube thinning, a novel method for compressing the output of a MCMC (Markov chain Monte Carlo) algorithm when control variates are available. It amounts to resampling the initial MCMC sample (according to weights derived from control variates), while imposing equality constraints on averages of these control variates, using the cube method of \cite{Deville2004}. Its main advantage is that its CPU cost is linear in $N$, the original sample size, and is constant in $M$, the required size for the compressed sample. This compares favourably to Stein thinning \citep{Riabiz2020}, which has complexity $\mathcal{O}(NM^2)$, and which requires the availability of the gradient of the target log-density (which automatically implies the availability of control variates). Our numerical experiments suggest that cube thinning is also competitive in terms of statistical error.
翻译:我们提出立方体稀释, 这是一种在有控制变量的情况下压缩 MCMC (Markov 链 Monte Carlo) 算法( Markov 链 Monte Carlo) 输出的新方法。 它相当于重新抽样最初的 MC MC (根据控制变量产生的重量), 同时使用 \ cite{ Deville2004} 的立方法对这些控变量的平均值施加平等限制 。 它的主要优势在于其CPU 成本以美元为线性, 其原始样本大小以美元为单位, 且以美元不变, 以美元为单位, 压缩样本所需大小为单位。 这比Stein 稀释 \ citep{Riabiz20} 有利, 后者复杂 $\ mathcal{O} (NM% 2), 需要目标日志密度梯度的可用度( 这自动意味着控制变量的可用性) 。 我们的数字实验显示, 立方体稀释在统计错误方面也有竞争力 。