Accept-reject based Markov chain Monte Carlo (MCMC) algorithms have traditionally utilised acceptance probabilities that can be explicitly written as a function of the ratio of the target density at the two contested points. This feature is rendered almost useless in Bayesian posteriors with unknown functional forms. We introduce a new family of MCMC acceptance probabilities that has the distinguishing feature of not being a function of the ratio of the target density at the two points. We present two stable Bernoulli factories that generate events within this class of acceptance probabilities. The efficiency of our methods rely on obtaining reasonable local upper or lower bounds on the target density and we present two classes of problems where such bounds are viable: Bayesian inference for diffusions and MCMC on constrained spaces. The resulting portkey Barker's algorithms are exact and computationally more efficient that the current state-of-the-art.
翻译:以接受为主的 Markov 链 Monte Carlo (MCMCC) 算法历来使用接受概率,这些概率可以作为两个争议点目标密度比例的函数来明确写成。 这个特征在巴伊西亚后方的功能形式不明的子孙中几乎毫无用处。 我们引入了一个新的组合, MCMC的接受概率的明显特征是, 它没有在两个点的目标密度比例的函数作用。 我们展示了两个稳定的Bernoulli工厂, 在接受概率这一类别中产生事件。 我们方法的效率取决于能否对目标密度获得合理的本地上下限, 我们提出两种类型的问题, 这些界限是可行的: 贝伊西亚扩散推论和MCMC关于受限空间的概率。 由此产生的波克巴克的算法是精确的, 并且计算得更有效率, 即当前的艺术状态 。