Designing a speech-to-intent (S2I) agent which maps the users' spoken commands to the agents' desired task actions can be challenging due to the diverse grammatical and lexical preference of different users. As a remedy, we discuss a user-taught S2I system in this paper. The user-taught system learns from scratch from the users' spoken input with action demonstration, which ensure it is fully matched to the users' way of formulating intents and their articulation habits. The main issue is the scarce training data due to the user effort involved. Existing state-of-art approaches in this setting are based on non-negative matrix factorization (NMF) and capsule networks. In this paper we combine the encoder of an end-to-end ASR system with the prior NMF/capsule network-based user-taught decoder, and investigate whether pre-training methodology can reduce training data requirements for the NMF and capsule network. Experimental results show the pre-trained ASR-NMF framework significantly outperforms other models, and also, we discuss limitations of pre-training with different types of command-and-control(C&C) applications.


翻译:设计一个语音到意向(S2I)代理器,用来绘制用户对代理人所希望的任务行动的口头指令(S2I),由于不同用户有不同的语法和词汇偏好,因此可能具有挑战性。作为一种补救措施,我们在本文件中讨论用户教的S2I系统。用户教化系统从用户口语输入中从零开始学习,用行动演示确保它与用户拟订意图的方式及其表达习惯完全吻合。主要问题是由于用户的努力而导致的培训数据稀少。在这一环境中,现有最先进的方法基于非负矩阵因子化(NMF)和胶囊网络。在本文中,我们把终端到终端的ASR系统的编码器与先前的NMF/Capsule网络的用户图解码器结合起来,并调查培训前方法能否减少NMF和胶囊网络的培训数据要求。实验结果显示,培训前的AR-NMF框架大大超越了其他模型,我们还讨论培训前控制前和C应用程序的局限性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Interface Modeling for Quality and Resource Management
Arxiv
0+阅读 · 2021年5月24日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员