Diagnosing convergence of Markov chain Monte Carlo is crucial and remains an essentially unsolved problem. Among the most popular methods, the potential scale reduction factor, commonly named $\hat{R}$, is an indicator that monitors the convergence of output chains to a target distribution, based on a comparison of the between- and within-variances. Several improvements have been suggested since its introduction in the 90s. Here, we aim at better understanding the $\hat{R}$ behavior by proposing a localized version that focuses on quantiles of the target distribution. This new version relies on key theoretical properties of the associated population value. It naturally leads to proposing a new indicator $\hat{R}_\infty$, which is shown to allow both for localizing the Markov chain Monte Carlo convergence in different quantiles of the target distribution, and at the same time for handling some convergence issues not detected by other $\hat{R}$ versions.
翻译:分析 Markov 链条 Monte Carlo 的趋同至关重要,基本上仍然是一个尚未解决的问题。 在最流行的方法中,潜在规模削减系数(通常称为$\hat{R}$)是监测产出链与目标分布的趋同的指标,该指标基于对差异与差异之间的比较。自90年代引入以来,提出了几项改进建议。在这里,我们的目标是通过提出一个侧重于目标分布的量化的本地化版本来更好地理解$\hat{R}行为。这个新版本依赖于相关人口值的关键理论属性。它自然导致提出一个新的指标$\hat{R}infty$,显示它既允许将Markov 链条Monte Carlo 合并到目标分布的不同方位,又允许同时处理其他${R}版本未发现的一些趋同问题。