Agent-based modelling (ABM) is a facet of wider Multi-Agent Systems (MAS) research that explores the collective behaviour of individual `agents', and the implications that their behaviour and interactions have for wider systemic behaviour. The method has been shown to hold considerable value in exploring and understanding human societies, but is still largely confined to use in academia. This is particularly evident in the field of Urban Analytics; one that is characterised by the use of new forms of data in combination with computational approaches to gain insight into urban processes. In Urban Analytics, ABM is gaining popularity as a valuable method for understanding the low-level interactions that ultimately drive cities, but as yet is rarely used by stakeholders (planners, governments, etc.) to address real policy problems. This paper presents the state-of-the-art in the application of ABM at the interface of MAS and Urban Analytics by a group of ABM researchers who are affiliated with the Urban Analytics programme of the Alan Turing Institute in London (UK). It addresses issues around modelling behaviour, the use of new forms of data, the calibration of models under high uncertainty, real-time modelling, the use of AI techniques, large-scale models, and the implications for modelling policy. The discussion also contextualises current research in wider debates around Data Science, Artificial Intelligence, and MAS more broadly.
翻译:在城市分析中,反弹道导弹作为一种有价值的方法越来越受欢迎,因为它有助于理解最终驱动城市的低层次互动,但利益攸关方(规划者、政府等)却很少使用这种方式来解决真正的政策问题。本文介绍了在城市分析学领域应用反弹道导弹系统的最新技术,该技术在与伦敦Alan Turing研究所(英国)的城市分析方案有关的一组反弹道导弹研究者在《反弹道导弹方案》和《城市分析学》的界面应用反弹道导弹系统分析学方面的最新应用,还探讨了模拟行为、使用新形式的数据、在高度不确定性下对模型进行校准、在更大范围上对当前数据模型进行广泛分析、在更大范围上进行数据模型分析、在更大范围上进行数据模型分析、在更大范围上进行数据模型研究、在更大范围上进行数据模型分析、在更大范围上进行数据模型分析、在更大范围上进行数据模型分析、在更大范围上进行数据模型研究、在更大范围上使用数据模型、在更大范围上进行模拟、在更大范围上进行数据模型研究、在更大范围上进行模型上进行模型研究、在更大范围内进行模型研究、在更大范围内进行模型上使用。