Researchers faced with a sequence of candidate model specifications must often choose the best specification that does not violate a testable identification assumption. One option in this scenario is sequential specification tests: hypothesis tests of the identification assumption over the sequence. Borrowing an idea from the change-point literature, this paper shows how to use the distribution of p-values from sequential specification tests to estimate the point in the sequence where the identification assumption ceases to hold. Unlike current approaches, this method is robust to individual errant p-values and does not require choosing a test level or tuning parameter. This paper demonstrates the method's properties with a simulation study, and illustrates it by application to the problems of choosing a bandwidth in a regression discontinuity design while maintaining covariate balance and of choosing a lag order for a time series model.
翻译:面临一系列候选模型规格的研究人员往往必须选择不违反可测试的识别假设的最佳规格。本设想的一个选择是顺序的规格测试:对序列的识别假设进行假设测试。从变更点文献中借用了一种想法。本文件展示了如何使用顺序规格测试中的 p值分布来估计识别假设不再维持的序列中的点。与目前的做法不同,这种方法对单个错误的 p值非常有力,不需要选择测试水平或调试参数。本文用模拟研究来说明该方法的特性,并通过应用在回归不连续设计中选择带宽来说明这一问题,同时保持共变平衡,并选择时间序列模型的滞后顺序。