5G radio access network (RAN) slicing aims to logically split an infrastructure into a set of self-contained programmable RAN slices, with each slice built on top of the underlying physical RAN (substrate) is a separate logical mobile network, which delivers a set of services with similar characteristics. Each RAN slice is constituted by various virtual network functions (VNFs) distributed geographically in numerous substrate nodes. A key challenge in building a robust RAN slicing is, therefore, designing a RAN slicing (RS)-configuration scheme that can utilize information such as resource availability in substrate networks as well as the interdependent relationships among slices to map (embed) VNFs onto live substrate nodes. With such motivation, we propose a machine-learning-powered RAN slicing scheme that aims to accommodate maximum numbers of slices (a set of connected Virtual Network Functions - VNFs) within a given request set. More specifically, we present a deep reinforcement scheme that is called Deep Allocation Agent (DAA). In short, DAA utilizes an empirically designed deep neural network that observes the current states of the substrate network and the requested slices to schedule the slices of which VNFs are then mapped to substrate nodes using an optimization algorithm. DAA is trained towards the goal of maximizing the number of accommodated slices in the given set by using an explicitly designed reward function. Our experiment study shows that, on average, DAA is able to maintain a rate of successfully routed slices above 80% in a resource-limited substrate network, and about 60% in extreme conditions, i.e., the available resources are much less than the demands.


翻译:5G 收音机访问网络(RAN)切片旨在逻辑地将一个基础设施分割成一组自成一体的可编程 RAN 切片,每个切片建在基础物理 RAN(基质)的顶端,是一个单独的逻辑逻辑移动网络,提供一系列具有类似特点的服务。每个RAN 切片由各种虚拟网络功能组成,地理分布在多个基底节点中。因此,在构建一个强大的RAN 裁剪处理程序方面的一个关键挑战是设计一个RAN 切片(RS)配置方案,它可以利用诸如基质网络的资源可用性以及每个切片到地图(基质)之间的相互依存关系等信息。基于这种动机,我们提议一个机器学习驱动的RAN 切片计划,旨在容纳最多数量的切片(一组连接的虚拟网络功能-VNFFS) 。更具体地说,我们提出一个叫“深度分配”的深度强化方案。简略地说,关于“基质网络”的资源可用率以及切与(嵌入的平面)系统网络的直径功能之间的相互依存关系。简略地,DAAA 研究利用一个实验式的精略的精度,用一个精度显示的精度显示的平层平面网络,而不用的平面平面的平面的平面的平面的平面的平面平面的平面图图图图图图图图显示的精度,在使用一个比。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
59+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
0+阅读 · 2022年9月15日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员