As passenger vehicle technologies have advanced, so have their capabilities to avoid obstacles, especially with developments in tires, suspensions, steering, as well as safety technologies like ABS, ESC, and more recently, ADAS systems. However, environments around passenger vehicles have also become more complex, and dangerous. There have previously been studies that outline driver tendencies and performance capabilities when attempting to avoid obstacles while driving passenger vehicles. Now that autonomous vehicles are being developed with obstacle avoidance capabilities, it is important to target performance that meets or exceeds that of human drivers. This manuscript highlights systems that are crucial for an emergency obstacle avoidance maneuver (EOAM) and identifies the state-of-the-art for each of the related systems, while considering the nuances of traveling at highway speeds. Some of the primary EOAM-related systems/areas that are discussed in this review are: general path planning methods, system hierarchies, decision-making, trajectory generation, and trajectory-tracking control methods. After concluding remarks, suggestions for future work which could lead to an ideal EOAM development, are discussed.
翻译:随着客运车辆技术的发展,它们避免障碍的能力也有所提高,特别是在轮胎、悬浮、驾驶以及安全技术(如ABS、ESC等)方面,以及最近在ADAS系统方面的发展。然而,客运车辆周围的环境也变得更加复杂和危险。以前曾进行过一些研究,概述驾驶员在试图避免驾驶客车时遇到障碍时的倾向和性能。现在,正在以避免障碍的能力发展自治车辆,因此,必须瞄准达到或超过人驾驶员的性能。这本手稿突出了对于紧急避免障碍操作(EOAM)至关重要的系统,并确定了每个相关系统的最新技术,同时考虑到高速旅行的微妙之处。本审查讨论的一些与EOAM有关的主要系统/领域是:一般路径规划方法、系统等级、决策、轨迹生成和轨迹跟踪控制方法。在结束发言后,将讨论关于未来工作的建议,这些工作可能导致EOAM的理想发展。