In comparison to conventional traffic designs, shared spaces promote a more pleasant urban environment with slower motorized movement, smoother traffic, and less congestion. In the foreseeable future, shared spaces will be populated with a mixture of autonomous vehicles (AVs) and vulnerable road users (VRUs) like pedestrians and cyclists. However, a driver-less AV lacks a way to communicate with the VRUs when they have to reach an agreement of a negotiation, which brings new challenges to the safety and smoothness of the traffic. To find a feasible solution to integrating AVs seamlessly into shared-space traffic, we first identified the possible issues that the shared-space designs have not considered for the role of AVs. Then an online questionnaire was used to ask participants about how they would like a driver of the manually driving vehicle to communicate with VRUs in a shared space. We found that when the driver wanted to give some suggestions to the VRUs in a negotiation, participants thought that the communications via the driver's body behaviors were necessary. Besides, when the driver conveyed information about her/his intentions and cautions to the VRUs, participants selected different communication methods with respect to their transport modes (as a driver, pedestrian, or cyclist). These results suggest that novel eHMIs might be useful for AV-VRU communication when the original drivers are not present. Hence, a potential eHMI design concept was proposed for different VRUs to meet their various expectations. In the end, we further discussed the effects of the eHMIs on improving the sociality in shared spaces and the autonomous driving systems.


翻译:与常规交通设计相比,共享空间促进了更舒适的城市环境,机动化运动速度较慢,交通更顺畅,拥挤程度也较低。在可预见的未来,共享空间将容纳像行人和骑自行车者那样的自主车辆和弱势道路使用者(VRUs)的混合体。然而,与常规交通设计相比,没有司机的AV没有办法与VRUS沟通,当他们必须达成谈判协议,给交通安全和平稳带来新的挑战。为了找到将AVs无缝地纳入共享空间交通的可行解决方案,我们首先确定了共享空间设计没有考虑的AVVs作用的可能问题。随后,使用在线问卷询问参与者,他们希望手动驾驶汽车的司机如何在共享空间与VRUs进行沟通。我们发现,当司机想在谈判中向VRUSs提供一些建议时,与会者认为通过司机的身体行为方式是必要的。此外,当司机传达有关她/他本人的意向的信息时,并向eRUs发出警告时,参与者们会选择了一种不同的沟通方式,当他们最初的A-RU的运输方式时,因此,他们可能选择了一种新的RUs的运输方式。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员