GraphQL is a popular new approach to build Web APIs that enable clients to retrieve exactly the data they need. Given the growing number of tools and techniques for building GraphQL servers, there is an increasing need for comparing how particular approaches or techniques affect the performance of a GraphQL server. To this end, we present LinGBM, a GraphQL performance benchmark to experimentally study the performance achieved by various approaches for creating a GraphQL server. In this article, we discuss the design considerations of the benchmark, describe its main components (data schema; query templates; performance metrics), and analyze the benchmark in terms of statistical properties that are relevant for defining concrete experiments. Thereafter, we present experimental results obtained by applying the benchmark in three different use cases, which demonstrates the broad applicability of LinGBM.
翻译:图形QL 是建立网络API的一种流行的新办法,使客户能够准确检索他们需要的数据。鉴于用于建立图形QL服务器的工具和技术越来越多,现在越来越需要比较特定方法或技术如何影响图形QL服务器的性能。为此,我们介绍一个图形QL业绩基准LinGBM,这是一个用于实验性研究创建图形QL服务器的各种办法的性能的图形QL性能基准。在本篇文章中,我们讨论了基准的设计考虑,描述了其主要组成部分(数据系统、查询模板、性能指标),并分析了与界定具体实验相关的统计属性基准。随后,我们介绍了通过在三个不同使用案例中应用基准而取得的实验结果,这显示了LIGBM的广泛适用性。