Modern methods for learning from data depend on many tuning parameters, such as the stepsize for optimization methods, and the regularization strength for regularized learning methods. Since performance can depend strongly on these parameters, it is important to develop comparisons between \emph{classes of methods}, not just for particularly tuned ones. Here, we take aim to compare classes of estimators via the relative performance of the \emph{best method in the class}. This allows us to rigorously quantify the tuning sensitivity of learning algorithms. As an illustration, we investigate the statistical estimation performance of ridge regression with a uniform grid of regularization parameters, and of gradient descent iterates with a fixed stepsize, in the standard linear model with a random isotropic ground truth parameter. (1) For orthogonal designs, we find the \emph{exact minimax optimal classes of estimators}, showing they are equal to gradient descent with a polynomially decaying learning rate. We find the exact suboptimalities of ridge regression and gradient descent with a fixed stepsize, showing that they decay as either $1/k$ or $1/k^2$ for specific ranges of $k$ estimators. (2) For general designs with a large number of non-zero eigenvalues, we find that gradient descent outperforms ridge regression when the eigenvalues decay slowly, as a power law with exponent less than unity. If instead the eigenvalues decay quickly, as a power law with exponent greater than unity or exponentially, we find that ridge regression outperforms gradient descent. Our results highlight the importance of tuning parameters. In particular, while optimally tuned ridge regression is the best estimator in our case, it can be outperformed by gradient descent when both are restricted to being tuned over a finite regularization grid.


翻译:从数据中学习的现代方法取决于许多调试参数,例如优化方法的阶梯化,以及正规化学习方法的正规化强度。由于性能可以在很大程度上依赖这些参数,因此,在标准线性模型中,不仅对方法的阶梯,而且对方法的阶梯进行对比十分重要。在这里,我们的目标是通过类内调方法的相对性能来比较测算器的等级。这使我们能够严格量化学习算法的调试灵敏度。作为一个示例,我们调查了峰值回归的统计估计性能,并有一个统一的整流参数网格,以及梯度下沉值的梯度下沉值。在标准线性模型中,使用随机的等式地面真相参数来进行对比。(1) 对于或梯度设计,我们找到的阶梯度最佳的等级与梯度的下降值相等,而多位性滑度的测算速度速度则比亚值低。我们发现峰值的底值差的底值差性差性差性差, 显示它们不是一美元,而是一美元或一美元的底值。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
50+阅读 · 2020年12月14日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
83+阅读 · 2020年8月22日
迁移学习简明教程,11页ppt
专知会员服务
105+阅读 · 2020年8月4日
专知会员服务
158+阅读 · 2020年1月16日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
数据分析师应该知道的16种回归技术:Lasso回归
数萃大数据
16+阅读 · 2018年8月13日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
数据分析师应该知道的16种回归技术:Lasso回归
数萃大数据
16+阅读 · 2018年8月13日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员