In competitive search settings such as the Web, many documents' authors (publishers) opt to have their documents highly ranked for some queries. To this end, they modify the documents - specifically, their content - in response to induced rankings. Thus, the search engine affects the content in the corpus via its ranking decisions. We present a first study of the ability of search engines to drive pre-defined, targeted, content effects in the corpus using simple techniques. The first is based on the herding phenomenon - a celebrated result from the economics literature - and the second is based on biasing the relevance ranking function. The types of content effects we study are either topical or touch on specific document properties - length and inclusion of query terms. Analysis of ranking competitions we organized between incentivized publishers shows that the types of content effects we target can indeed be attained by applying our suggested techniques. These findings have important implications with regard to the role of search engines in shaping the corpus.


翻译:在诸如网络等竞争性搜索环境中,许多文件的作者(出版商)选择将其文件高度排名,以供某些查询。为此,他们修改文件,特别是其内容,以回应诱发的排名。因此,搜索引擎通过其排名决定影响文稿的内容。我们首次研究了搜索引擎利用简单技术推动文稿中预先定义的、有针对性的内容效果的能力。第一个研究基于放牧现象――经济学文献中值得庆贺的成果――第二个研究基于相关排名功能的偏差。我们研究的内容效果类型要么是专题性的,要么是针对特定文件属性的,长度和包含查询术语。我们对激励出版商之间组织的排名竞争分析表明,我们的目标内容效应的种类确实可以通过应用我们所建议的技术实现。这些研究结果对搜索引擎在塑造文稿中的作用有着重要影响。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员