Graphic Processing Units (GPUs) have become ubiquitous in scientific computing. However, writing efficient GPU kernels can be challenging due to the need for careful code tuning. To automatically explore the kernel optimization space, several auto-tuning tools - like Kernel Tuner - have been proposed. Unfortunately, these existing auto-tuning tools often do not concern themselves with integration of tuning results back into applications, which puts a significant implementation and maintenance burden on application developers. In this work, we present Kernel Launcher: an easy-to-use C++ library that simplifies the creation of highly-tuned CUDA applications. With Kernel Launcher, programmers can capture kernel launches, tune the captured kernels for different setups, and integrate the tuning results back into applications using runtime compilation. To showcase the applicability of Kernel Launcher, we consider a real-world computational fluid dynamics code and tune its kernels for different GPUs, input domains, and precisions.


翻译:图形处理单元(GPU)已成为科学计算中的普遍存在。不过,由于需要进行精心的代码调整,因此编写高效的GPU内核可能具有挑战性。为了自动探索内核优化空间,已经提出了几种自动调整工具,如Kernel Tuner。不幸的是,这些现有的自动调整工具通常并不关心将调整结果集成回应用程序中,这对应用程序开发人员带来了重大的实现和维护负担。在这项工作中,我们提供一种易于使用的C ++库 - Kernel Launcher,它简化了创建高度调整的CUDA应用程序的过程。使用Kernel Launcher,程序员可以捕获内核启动、为不同的设置调整捕获的内核,并使用运行时编译将调整结果集成回应用程序中。为了展示Kernel Launcher的适用性,我们考虑了一个实际的计算流体动力学代码,并将其内核调整为不同的GPU、输入域和精度。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
编写完10万行代码,我发了篇长文吐槽Rust
机器之心
0+阅读 · 2022年6月25日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
使用全新 Android 指南,助您实现自动化测试
谷歌开发者
0+阅读 · 2022年5月31日
用Now轻松部署无服务器Node应用程序
前端之巅
16+阅读 · 2019年6月19日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
编写完10万行代码,我发了篇长文吐槽Rust
机器之心
0+阅读 · 2022年6月25日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
使用全新 Android 指南,助您实现自动化测试
谷歌开发者
0+阅读 · 2022年5月31日
用Now轻松部署无服务器Node应用程序
前端之巅
16+阅读 · 2019年6月19日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员