The recently proposed Vision transformers (ViTs) have shown very impressive empirical performance in various computer vision tasks, and they are viewed as an important type of foundation model. However, ViTs are typically constructed with large-scale sizes, which then severely hinder their potential deployment in many practical resources-constrained applications. To mitigate this challenging problem, structured pruning is a promising solution to compress model size and enable practical efficiency. However, unlike its current popularity for CNNs and RNNs, structured pruning for ViT models is little explored. In this paper, we propose GOHSP, a unified framework of Graph and Optimization-based Structured Pruning for ViT models. We first develop a graph-based ranking for measuring the importance of attention heads, and the extracted importance information is further integrated to an optimization-based procedure to impose the heterogeneous structured sparsity patterns on the ViT models. Experimental results show that our proposed GOHSP demonstrates excellent compression performance. On CIFAR-10 dataset, our approach can bring 40% parameters reduction with no accuracy loss for ViT-Small model. On ImageNet dataset, with 30% and 35% sparsity ratio for DeiT-Tiny and DeiT-Small models, our approach achieves 1.65% and 0.76% accuracy increase over the existing structured pruning methods, respectively.


翻译:最近提出的愿景变压器(Viet 变压器)在各种计算机愿景任务中表现出了非常令人印象深刻的经验性表现,并被视为一种重要的基础模型。然而,ViT通常以大型规模构建,从而严重妨碍其在很多实际资源受限制的应用程序中的潜在部署。为了缓解这一具有挑战性的问题,结构化的裁剪是压缩模型规模和促成实际效率的一个很有希望的解决方案。然而,与其目前对CNN和RNN的受欢迎程度不同,对ViT模型的结构化剪裁很少探索。在本文中,我们提议GOHSP,一个基于图形和优化的结构化结构化结构化结构化框架,用于ViT模型的统一框架。我们首先开发了一个基于图表的排名,用于衡量关注头的重要性,而提取的重要信息进一步整合到一个基于优化的程序,以将多元结构性结构化的偏振幅模式强加在ViT模型上。实验结果表明,我们提议的GOHSP展示了优秀的压缩性表现。在CFAR-10数据集中,我们的方法可以带来40%的参数减少,而 ViT-Small模型没有准确性损失。在图像网络数据设置上,分别有30 %和35的S-treal-de-trodustris-de%-tres-trodustration rodustration roductions

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员