A challenge arising from the local Bayesian assimilation of data in an atmospheric flow simulation is the imbalances it may introduce. Acoustic fast-mode imbalances of the order of the slower dynamics can be negated by employing a blended numerical model with seamless access to the compressible and the soundproof pseudo-incompressible dynamics. Here, the blended modelling strategy by Benacchio et al., MWR, vol. 142 (2014) is upgraded in an advanced numerical framework and extended with a Bayesian local ensemble data assimilation method. Upon assimilation of data, the model configuration is switched to the pseudo-incompressible regime for one time-step. After that, the model configuration is switched back to the compressible model for the duration of the assimilation window. The switching between model regimes is repeated for each subsequent assimilation window. An improved blending strategy for the numerical model ensures that a single time-step in the pseudo-incompressible regime is sufficient to suppress imbalances coming from the initialisation and data assimilation. This improvement is based on three innovations: (i) the association of pressure fields computed at different stages of the numerical integration with actual time levels; (ii) a conversion of pressure-related variables between the model regimes derived from low Mach number asymptotics; and (iii) a judicious selection of the pressure variables used in converting numerical model states when a switch of models occurs. Idealised two-dimensional travelling vortex and buoyancy-driven bubble convection experiments show that acoustic imbalances arising from data assimilation can be eliminated by using this blended model, thereby achieving balanced analysis fields.
翻译:在大气流模拟中,当地Bayesian将数据吸收到大气流模拟中所产生的一个挑战是它可能带来的不平衡。如果采用混合数字模型,能够无缝地进入压缩和隔音的伪抑制性动态,就可以消除较慢动态动态顺序的声学快速模式失衡。这里,Benacchio等人(MWR,vol.142(2014))的混合模型战略在一个先进的数字框架中升级,并随着巴耶西亚当地混合数据吸收方法的扩展而扩大。在数据吸收时,模型配置将转而采用模拟抑制性制度,一个时间步骤。之后,模型配置将转换到可压缩的模型模式。在同化窗口持续期间,模型配置可以转换到可压缩的模型。Benacchio等人(MWR,vol.)的混合战略改进后,假压缩机制的单一时间步骤足以消除初始化和数据吸收性数据吸收的不平衡。这种改进可以基于三个创新:(i)在从不同阶段从模拟模型中计算到模拟的模拟的模拟,在同级的同级的同级之间,从实际的同级分析中,将数据变变的变的变的变的变的变的变的变的变的变的变的数值。(i)在从数值中,(ax的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的