Being a matter of cognition, user interests should be apt to classification independent of the language of users, social network and content of interest itself. To prove it, we analyze a collection of English and Russian Twitter and Vkontakte community pages by interests of their followers. First, we create a model of Major Interests (MaIs) with the help of expert analysis and then classify a set of pages using machine learning algorithms (SVM, Neural Network, Naive Bayes, and some other). We take three interest domains that are typical of both English and Russian-speaking communities: football, rock music, vegetarianism. The results of classification show a greater correlation between Russian-Vkontakte and Russian-Twitter pages while English-Twitterpages appear to provide the highest score.


翻译:作为认知问题,用户兴趣应该能够脱离用户的语言、社交网络和感兴趣的内容本身进行分类。为了证明这一点,我们按其追随者的利益对英文和俄文推特和Vkontakte社区网页的汇编进行分析。首先,我们在专家分析的帮助下创建了主要利益模式,然后使用机器学习算法(SVM、神经网络、Nive Bayes 和其他部分)对一组网页进行分类。我们采用了英语和俄语社区典型的三个利益领域:足球、摇滚音乐、素食主义。分类结果显示俄罗斯-Vkontakte和俄语-Twitter网页之间的相关性更大,而英语-Twitter网页似乎提供了最高分数。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年6月18日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2018年1月23日
Arxiv
3+阅读 · 2017年11月20日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员