We study the behavior of a label propagation algorithm (LPA) on the Erd\H{o}s-R\'enyi random graph $\mathcal{G}(n,p)$. Initially, given a network, each vertex starts with a random label in the interval $[0,1]$. Then, in each round of LPA, every vertex switches its label to the majority label in its neighborhood (including its own label). At the first round, ties are broken towards smaller labels, while at each of the next rounds, ties are broken uniformly at random. The algorithm terminates once all labels stay the same in two consecutive iterations. LPA is successfully used in practice for detecting communities in networks (corresponding to vertex sets with the same label after termination of the algorithm). Perhaps surprisingly, LPA's performance on dense random graphs is hard to analyze, and so far convergence to consenus was known only when $np\ge n^{3/4+\varepsilon}$. By a very careful multi-stage exposure of the edges, we break this barrier and show that, when $np \ge n^{5/8+\varepsilon}$, a.a.s. the algorithm terminates with a single label. Moreover, we show that, if $np\gg n^{2/3}$, a.a.s. this label is the smallest one, whereas if $n^{5/8+\varepsilon}\le np\ll n^{2/3}$, the surviving label is a.a.s. not the smallest one.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月3日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员