Given a graph $G=(V,E)$ with arboricity $\alpha$, we study the problem of decomposing the edges of $G$ into $(1+\epsilon)\alpha$ disjoint forests in the distributed LOCAL model. Barenboim and Elkin [PODC `08] gave a LOCAL algorithm that computes a $(2+\epsilon)\alpha$-forest decomposition using $O(\frac{\log n}{\epsilon})$ rounds. Ghaffari and Su [SODA `17] made further progress by computing a $(1+\epsilon) \alpha$-forest decomposition in $O(\frac{\log^3 n}{\epsilon^4})$ rounds when $\epsilon \alpha = \Omega(\sqrt{\alpha \log n})$, i.e. the limit of their algorithm is an $(\alpha+ \Omega(\sqrt{\alpha \log n}))$-forest decomposition. This algorithm, based on a combinatorial construction of Alon, McDiarmid \& Reed [Combinatorica `92], in fact provides a decomposition of the graph into \emph{star-forests}, i.e. each forest is a collection of stars. Our main result in this paper is to reduce the threshold of $\epsilon \alpha$ in $(1+\epsilon)\alpha$-forest decomposition and star-forest decomposition. This further answers the $10^{\text{th}}$ open question from Barenboim and Elkin's {\it Distributed Graph Algorithms} book. Moreover, it gives the first $(1+\epsilon)\alpha$-orientation algorithms with {\it linear dependencies} on $\epsilon^{-1}$. At a high level, our results for forest-decomposition are based on a combination of network decomposition, load balancing, and a new structural result on local augmenting sequences. Our result for star-forest decomposition uses a more careful probabilistic analysis for the construction of Alon, McDiarmid, \& Reed; the bounds on star-arboricity here were not previously known, even non-constructively.


翻译:以GG=( V, E) =( ) =( =) =( =) =( =( =) =( =) =( =) =( =) =( =( =) =( =) =( =) =( =) =( o) =( o) =( o) =( =) =( o) =( o) =( =( =) =( =) =( =) =( =( =) =( =) =( =) =( =) =( =) =( =) =( =( =) =( =) =( =) =( =) =( =) =( =( =) =( =) =( =) =( =( =) =( =) =) =( =) =) =( =( =) =) =( =) =( =) =( =) =) =( =) =( =) =( =) =) =) =) =) =( =) =( =( =( =) =( =) =)) =) =( =( =( =)) =( =) =( =)) =( =) =( =) =( =( =) =)) =( =) =)) =( =( =)) =) =( =)))))))))) =( =( =( =( =( =) =( =)))) =(=(=)))) =(=)))))(=( =(=(=(=(=(=))))))))

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员