The curse of dimensionality is a phenomenon frequently observed in machine learning (ML) and knowledge discovery (KD). There is a large body of literature investigating its origin and impact, using methods from mathematics as well as from computer science. Among the mathematical insights into data dimensionality, there is an intimate link between the dimension curse and the phenomenon of measure concentration, which makes the former accessible to methods of geometric analysis. The present work provides a comprehensive study of the intrinsic geometry of a data set, based on Gromov's metric measure geometry and Pestov's axiomatic approach to intrinsic dimension. In detail, we define a concept of geometric data set and introduce a metric as well as a partial order on the set of isomorphism classes of such data sets. Based on these objects, we propose and investigate an axiomatic approach to the intrinsic dimension of geometric data sets and establish a concrete dimension function with the desired properties. Our model for data sets and their intrinsic dimension is computationally feasible and, moreover, adaptable to specific ML/KD-algorithms, as illustrated by various experiments.


翻译:在机器学习(ML)和知识发现(KD)中经常观察到的是一种对维度的诅咒现象。有大量文献用数学和计算机科学的方法来调查其起源和影响。在数据维度的数学洞察中,维度的诅咒和测量集中现象之间有着密切的联系,使前者能够使用几何分析方法。目前的工作根据格罗莫夫的计量几何测量法和佩斯托夫对内在维度的对立法,对数据集的内在几何学进行了全面研究。我们详细界定了几何数据集的概念,并在这类数据集的无形态类集中引入了计量法和部分顺序。根据这些天体,我们提出并调查了对几何数据集内在维度的不言理方法,并确定了与所期望的特性相关的具体维度功能。我们的数据集模型及其内在维度模型是可计算可行的,此外,我们还根据各种实验所显示的具体ML/KD-algorithms进行了调整。

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
12+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2020年12月8日
Arxiv
0+阅读 · 2020年12月6日
Arxiv
0+阅读 · 2020年12月5日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关VIP内容
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
12+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员