This paper is concerned with temporal convergence analysis of the recently introduced Dynamically Regularized Lagrange Multiplier (DRLM) method for the incompressible Navier-Stokes equations. A key feature of the DRLM approach is the incorporation of the kinetic energy evolution through a quadratic dynamic equation involving a time-dependent Lagrange multiplier and a regularization parameter. We apply the backward Euler method with an explicit treatment of the nonlinear convection term and show the unique solvability of the resulting first-order DRLM scheme. Optimal error estimates for the velocity and pressure are established based on a uniform bound on the Lagrange multiplier and mathematical induction. Numerical results confirm the theoretical convergence rates and error bounds that decay with respect to the regularization parameter.
翻译:本文针对近期提出的求解不可压缩Navier-Stokes方程的动态正则化拉格朗日乘子法进行时间收敛性分析。DRLM方法的核心特征是通过一个包含时变拉格朗日乘子和正则化参数的二次动态方程来纳入动能演化。我们采用对非线性对流项进行显式处理的后向欧拉方法,证明了所得一阶DRLM格式的唯一可解性。基于对拉格朗日乘子的统一有界性约束和数学归纳法,建立了速度和压力的最优误差估计。数值结果验证了理论收敛率以及误差界随正则化参数衰减的特性。