The popularity of racket sports (e.g., tennis and table tennis) leads to high demands for data analysis, such as notational analysis, on player performance. While sports videos offer many benefits for such analysis, retrieving accurate information from sports videos could be challenging. In this paper, we propose EventAnchor, a data analysis framework to facilitate interactive annotation of racket sports video with the support of computer vision algorithms. Our approach uses machine learning models in computer vision to help users acquire essential events from videos (e.g., serve, the ball bouncing on the court) and offers users a set of interactive tools for data annotation. An evaluation study on a table tennis annotation system built on this framework shows significant improvement of user performances in simple annotation tasks on objects of interest and complex annotation tasks requiring domain knowledge.
翻译:电击运动(例如网球和网球)的流行导致对球员性能的数据分析(例如记号分析)的需求很高。虽然体育视频为这种分析提供了许多好处,但从体育视频中检索准确信息可能具有挑战性。在本文中,我们提议了ActionAnchor数据分析框架,以便利在计算机视觉算法的支持下对电击运动视频进行互动式注解。我们的方法在计算机视觉中使用机器学习模型,帮助用户从视频(例如服务、球在法庭上弹跳)中获得基本活动,并为用户提供一套互动工具,用于数据注解。在这个框架基础上建立的桌式网球记记系统的评估研究表明,用户在简单注注解任务方面的业绩有显著改善,涉及需要域知识的物品和复杂注任务。