In this paper, we develop an iterative scheme to construct multiscale basis functions within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for the mixed formulation. The iterative procedure starts with the construction of an energy minimizing snapshot space that can be used for approximating the solution of the model problem. A spectral decomposition is then performed on the snapshot space to form global multiscale space. Under this setting, each global multiscale basis function can be split into a non-decaying and a decaying parts. The non-decaying part of a global basis is localized and it is fixed during the iteration. Then, one can approximate the decaying part via a modified Richardson scheme with an appropriately defined preconditioner. Using this set of iterative-based multiscale basis functions, first-order convergence with respect to the coarse mesh size can be shown if sufficiently many times of iterations with regularization parameter being in an appropriate range are performed. Numerical results are presented to illustrate the effectiveness and efficiency of the proposed computational multiscale method.
翻译:在本文中,我们开发了一种迭代办法,在混合配方的“限制能源最小化通用多级限制元素法”(CEM-GMSFEM)框架内构建多尺度基础功能。迭代程序始于构建一个能最小化快照空间,用于接近模型问题的解决方案。然后在快照空间上进行光谱分解,形成全球多尺度空间。在此背景下,每个全球多尺度基函数可以分为非淡化和衰变部分。全球基础的非淡化部分是本地化的,并在迭代期间固定。然后,一个迭代程序可以通过一个经过修改的Richardson方案,用一个适当界定的前提条件,对衰变部分进行估计。使用这套基于迭代的多尺度基础功能,可以显示与粗微网格大小的第一顺序的趋同,如果在适当范围内进行足够多次的与正统化参数的迭代,则可以显示与粗微网格大小的相趋同。