This study investigates the application of Genetic Fuzzy Systems (GFS) to model the self-noise generated by airfoils, a key issue in aeroaccoustics with significant implications for aerospace, automotive and drone applications. Using the publicly available Airfoil Self Noise dataset, various Fuzzy regression strategies are explored and compared. The paper evaluates a brute force Takagi Sugeno Kang (TSK) fuzzy system with high rule density, a cascading Geneti Fuzzy Tree (GFT) architecture and a novel clustered approach based on Fuzzy C-means (FCM) to reduce the model's complexity. This highlights the viability of clustering assisted fuzzy inference as an effective regression tool for complex aero accoustic phenomena. Keywords : Fuzzy logic, Regression, Cascading systems, Clustering and AI.
翻译:本研究探讨了遗传模糊系统在翼型自噪声建模中的应用,这是气动声学领域的关键问题,对航空航天、汽车和无人机应用具有重要意义。利用公开可用的翼型自噪声数据集,本文探索并比较了多种模糊回归策略。论文评估了具有高规则密度的暴力Takagi-Sugeno-Kang模糊系统、级联遗传模糊树架构,以及一种基于模糊C均值聚类的新型聚类方法以降低模型复杂度。这凸显了聚类辅助模糊推理作为复杂气动声学现象有效回归工具的可行性。关键词:模糊逻辑,回归,级联系统,聚类,人工智能。