Researchers and innovators have made enormous efforts in developing ideation methods, such as morphological analysis and design-by-analogy, to aid engineering design ideation for problem solving and innovation. Among these, the Theory of Inventive Problem Solving (TRIZ) stands out as one of the most well-known approaches, widely applied for systematic innovation. However, the complexity of TRIZ resources and concepts, coupled with its reliance on users' knowledge, experience, and reasoning capabilities, limits its practicality. Therefore, we explore the recent advances of large language models (LLMs) for a generative approach to bridge this gap. This paper proposes AutoTRIZ, an artificial ideation tool that uses LLMs to automate and enhance the TRIZ methodology. By leveraging the broad knowledge and advanced reasoning capabilities of LLMs, AutoTRIZ offers a novel approach for design automation and interpretable ideation with artificial intelligence. AutoTRIZ takes a problem statement from the user as its initial input, and automatically generates a solution report after the reasoning process. We demonstrate and evaluate the effectiveness of AutoTRIZ through consistency experiments in contradiction detection, and a case study comparing solutions generated by AutoTRIZ with the experts' analyses from the textbook. Moreover, the proposed LLM-based framework holds the potential for extension to automate other knowledge-based ideation methods, including SCAMPER, Design Heuristics, and Design-by-Analogy, paving the way for a new era of artificial ideation for design innovation.
翻译:暂无翻译