Several centralised RDF systems support datalog reasoning by precomputing and storing all logically implied triples using the wellknown seminaive algorithm. Large RDF datasets often exceed the capacity of centralised RDF systems, and a common solution is to distribute the datasets in a cluster of shared-nothing servers. While numerous distributed query answering techniques are known, distributed seminaive evaluation of arbitrary datalog rules is less understood. In fact, most distributed RDF stores either support no reasoning or can handle only limited datalog fragments. In this paper we extend the dynamic data exchange approach for distributed query answering by Potter et al. [12] to a reasoning algorithm that can handle arbitrary rules while preserving important properties such as nonrepetition of inferences. We also show empirically that our algorithm scales well to very large RDF datasets
翻译:多个集中的RDF系统支持数据推理,通过预先计算和储存所有逻辑隐含的三重逻辑,使用众所周知的半衰算法。大型的RDF数据集往往超过集中的RDF系统的能力,共同的解决方案是将数据集分布在一组共享的无共享服务器中。虽然已知道许多分散的问答技术,但对任意数据规则的分散的半衰评价却不那么为人所知。事实上,大多数分布的RDF仓库要么不支持任何推理,要么只能处理有限的数据碎片。在本文中,我们将波特等人(12)对分布式查询的动态数据交换方法推广到可以处理任意规则而又保留不重复推断等重要特性的推理算算法。我们还从经验上表明,我们的算法尺度非常适合非常大的RDF数据集。