We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method, one can find explicit constructions and counterexamples to several open conjectures in extremal combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the adjacency and distance eigenvalues of graphs.
翻译:我们通过使用强化学习算法、深入的跨热带方法,可以证明如何在极端组合合成学和图形理论中找到几个公开的假设的清晰构建和反示例。 我们反驳的猜测包括布鲁尔迪和曹方关于尽可能扩大避免模式模式永久性的问题,以及与图表的相邻性和距离等值有关的一些问题。