The Sensor, Observation, Sample, and Actuator (SOSA) ontology provides a formal but lightweight general-purpose specification for modeling the interaction between the entities involved in the acts of observation, actuation, and sampling. SOSA is the result of rethinking the W3C-XG Semantic Sensor Network (SSN) ontology based on changes in scope and target audience, technical developments, and lessons learned over the past years. SOSA also acts as a replacement of SSN's Stimulus Sensor Observation (SSO) core. It has been developed by the first joint working group of the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C) on \emph{Spatial Data on the Web}. In this work, we motivate the need for SOSA, provide an overview of the main classes and properties, and briefly discuss its integration with the new release of the SSN ontology as well as various other alignments to specifications such as OGC's Observations and Measurements (O\&M), Dolce-Ultralite (DUL), and other prominent ontologies. We will also touch upon common modeling problems and application areas related to publishing and searching observation, sampling, and actuation data on the Web. The SOSA ontology and standard can be accessed at \url{https://www.w3.org/TR/vocab-ssn/}.


翻译:传感器、观测、抽样和动画家(SOSA)的肿瘤学提供了一种正式但轻量的通用规格,用于模拟参与观察、促动和取样行为的实体之间的互动。SOSA是重新思考W3C-XG Smantic Sensor网络(SSN)的肿瘤学的结果,其基础是范围和目标受众的变化、技术发展和过去几年的经验教训。SOSA还取代了SSN的模拟传感器观测核心。它是由开放地理空间联合会(OGC)和万维网联合会(W3C)的第一个联合工作组制定的。在这项工作中,我们提出对W3C-XG Smantitic Sensor Sensor网络(SSN)的肿瘤学需要,概述主要课程和特性,并简要讨论它与SSN的新的发布以及诸如OGC的观测和测量(OQM)、Dolce-Ultraoaloals观测(DUL)以及共同触摸/Serbaliseralus标准应用领域和其他标准应用领域。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Sketch-Based System for Semantic Parsing
Arxiv
4+阅读 · 2019年9月12日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员