This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependencies. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from two scenarios defined in United Nations Regulation No. 157. Our evaluation on approximately 18 million instances of these two scenarios demonstrates that Gaussian Mixture Copula Models consistently surpass Gaussian Copula Models and perform better than, or at least comparably to, Gaussian Mixture Models, as measured by both log-likelihood and Sinkhorn distance. These results are promising for the adoption of Gaussian Mixture Copula Models as a statistical foundation for future scenario-based validation frameworks.
翻译:本文首次将高斯混合Copula模型应用于自动驾驶系统安全验证中的驾驶场景统计建模。场景参数的联合概率分布知识对于基于场景的安全性评估至关重要,其中风险量化依赖于具体参数组合的可能性。高斯混合Copula模型结合了高斯混合模型的多模态表达能力与Copula的灵活性,实现了边缘分布与依赖关系的分别建模。我们使用从联合国第157号法规中定义的两个场景提取的真实驾驶数据,将高斯混合Copula模型与先前提出的方法——高斯混合模型和高斯Copula模型——进行了基准测试。在这两个场景约1800万个实例上的评估表明,无论是根据对数似然还是Sinkhorn距离衡量,高斯混合Copula模型始终优于高斯Copula模型,并且表现优于或至少与高斯混合模型相当。这些结果为采用高斯混合Copula模型作为未来基于场景的验证框架的统计基础提供了有希望的依据。