We experiment with COVID-Twitter-BERT and RoBERTa models to identify informative COVID-19 tweets. We further experiment with adversarial training to make our models robust. The ensemble of COVID-Twitter-BERT and RoBERTa obtains a F1-score of 0.9096 (on the positive class) on the test data of WNUT-2020 Task 2 and ranks 1st on the leaderboard. The ensemble of the models trained using adversarial training also produces similar result.


翻译:我们实验了COVID-Twitter-BERT和RobERTA模型,以识别信息丰富的COVID-19推特,我们进一步实验了对抗性培训,以使我们的模型更加坚固,COVID-Twitter-BERT和RoBERTA的组合在WNUT-2020任务2的测试数据上获得了0.9096的F-1分数(正级),并在领导板上排名第一,使用对抗性培训所培训的模型的组合也产生了类似的结果。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
310+阅读 · 2020年11月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
已删除
将门创投
12+阅读 · 2019年7月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Teacher-Student Training for Robust Tacotron-based TTS
Arxiv
3+阅读 · 2018年6月5日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
已删除
将门创投
12+阅读 · 2019年7月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Top
微信扫码咨询专知VIP会员