Two-dimensional nanomaterials, such as graphene, have been extensively studied because of their outstanding physical properties. Structure and geometry optimization of nanopores on such materials is beneficial for their performances in real-world engineering applications, like water desalination. However, the optimization process often involves very large number of experiments or simulations which are expensive and time-consuming. In this work, we propose a graphene nanopore optimization framework via the combination of deep reinforcement learning (DRL) and convolutional neural network (CNN) for efficient water desalination. The DRL agent controls the growth of nanopore by determining the atom to be removed at each timestep, while the CNN predicts the performance of nanoporus graphene for water desalination: the water flux and ion rejection at a certain external pressure. With the synchronous feedback from CNN-accelerated desalination performance prediction, our DRL agent can optimize the nanoporous graphene efficiently in an online manner. Molecular dynamics (MD) simulations on promising DRL-designed graphene nanopores show that they have higher water flux while maintaining rival ion rejection rate compared to the normal circular nanopores. Semi-oval shape with rough edges geometry of DRL-designed pores is found to be the key factor for their high water desalination performance. Ultimately, this study shows that DRL can be a powerful tool for material design.
翻译:对二维纳米材料(如石墨)进行了广泛研究,因为其物理特性非常出色。纳米材料的结构和几何优化有利于其在水脱盐等现实世界工程应用中的性能。然而,优化过程往往涉及大量昂贵和耗时的实验或模拟。在这项工作中,我们提议通过深度强化学习(DRL)和进化神经网络(CNN)相结合,优化石墨框架,以高效海水淡化。DRL代理控制纳米材料的生长,方法是确定每时步要去除的原子,而CNN则预测水淡化的纳米浮质:水通量和离子拒绝在某些外部压力下的表现。随着CNN-加速海水淡化性能预测的同步反馈,我们的DRL代理可以以在线方式高效地优化纳米石墨。关于有希望的DRM-设计石墨的分子动态模拟显示,它们具有较高的水量通量,同时保持对准的压压压力温度,同时保持对准的RMRM-R-R-r-r-r-r-la-ral-ral-ral-al-al-al-al-ral-al-ral-ral-ral-al-al-al-al-al-ral-ral-al-ral-al-ral-ral-al-al-al-sal-sal-ral-al-al-al-al-al-sal-al-al-al-al-al-al-al-sal-al-al-al-al-al-al-al-sal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-s-s-s-s-al-s-s-s-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-sal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-