Two-dimensional nanomaterials, such as graphene, have been extensively studied because of their outstanding physical properties. Structure and geometry optimization of nanopores on such materials is beneficial for their performances in real-world engineering applications, like water desalination. However, the optimization process often involves very large number of experiments or simulations which are expensive and time-consuming. In this work, we propose a graphene nanopore optimization framework via the combination of deep reinforcement learning (DRL) and convolutional neural network (CNN) for efficient water desalination. The DRL agent controls the growth of nanopore by determining the atom to be removed at each timestep, while the CNN predicts the performance of nanoporus graphene for water desalination: the water flux and ion rejection at a certain external pressure. With the synchronous feedback from CNN-accelerated desalination performance prediction, our DRL agent can optimize the nanoporous graphene efficiently in an online manner. Molecular dynamics (MD) simulations on promising DRL-designed graphene nanopores show that they have higher water flux while maintaining rival ion rejection rate compared to the normal circular nanopores. Semi-oval shape with rough edges geometry of DRL-designed pores is found to be the key factor for their high water desalination performance. Ultimately, this study shows that DRL can be a powerful tool for material design.


翻译:对二维纳米材料(如石墨)进行了广泛研究,因为其物理特性非常出色。纳米材料的结构和几何优化有利于其在水脱盐等现实世界工程应用中的性能。然而,优化过程往往涉及大量昂贵和耗时的实验或模拟。在这项工作中,我们提议通过深度强化学习(DRL)和进化神经网络(CNN)相结合,优化石墨框架,以高效海水淡化。DRL代理控制纳米材料的生长,方法是确定每时步要去除的原子,而CNN则预测水淡化的纳米浮质:水通量和离子拒绝在某些外部压力下的表现。随着CNN-加速海水淡化性能预测的同步反馈,我们的DRL代理可以以在线方式高效地优化纳米石墨。关于有希望的DRM-设计石墨的分子动态模拟显示,它们具有较高的水量通量,同时保持对准的压压压力温度,同时保持对准的RMRM-R-R-r-r-r-r-la-ral-ral-ral-al-al-al-al-ral-al-ral-ral-ral-al-al-al-al-al-ral-ral-al-ral-al-ral-ral-al-al-al-sal-sal-ral-al-al-al-al-al-sal-al-al-al-al-al-al-al-sal-al-al-al-al-al-al-al-sal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-s-s-s-s-al-s-s-s-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-sal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月11日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员