Headline generation is a task of generating an appropriate headline for a given article, which can be further used for machine-aided writing or enhancing the click-through ratio. Current works only use the article itself in the generation, but have not taken the writing style of headlines into consideration. In this paper, we propose a novel Seq2Seq model called CLH3G (Contrastive Learning enhanced Historical Headlines based Headline Generation) which can use the historical headlines of the articles that the author wrote in the past to improve the headline generation of current articles. By taking historical headlines into account, we can integrate the stylistic features of the author into our model, and generate a headline not only appropriate for the article, but also consistent with the author's style. In order to efficiently learn the stylistic features of the author, we further introduce a contrastive learning based auxiliary task for the encoder of our model. Besides, we propose two methods to use the learned stylistic features to guide both the pointer and the decoder during the generation. Experimental results show that historical headlines of the same user can improve the headline generation significantly, and both the contrastive learning module and the two style features fusion methods can further boost the performance.
翻译:标题生成是一项任务, 为某篇文章制作一个合适的标题, 可以进一步用于机器辅助的写作或提高点击率。 目前的工作只使用该文章本身的版本, 但没有考虑标题的写法风格。 在本文中, 我们提议了一个名为 Seq2Seqeq 的新颖的Seq2Seq 模型, 名为 CLH3G( 关注学习增强历史标题基于标题生成), 这个模型可以使用作者过去写的文章的历史标题标题来改进当前文章的头版的生成。 通过考虑历史头条, 我们可以将作者的文体特征纳入我们的模型, 并且生成一个不仅适合文章的首页风格, 并且与作者的风格相一致。 为了有效地学习作者的文体特征, 我们进一步为模型的编码者引入一个基于对比学习的辅助任务。 此外, 我们提出两种方法, 来使用学习过的文体特征来指导点和分解器的版本。 实验结果显示, 历史头版用户的模范模式可以大大改进了生成的模范式和进制。