Neutrino telescopes detect rare interactions of particles produced in some of the most extreme environments in the Universe. This is accomplished by instrumenting a cubic-kilometer scale volume of naturally occurring transparent medium with light sensors. Given their substantial size and the high frequency of background interactions, these telescopes amass an enormous quantity of large variance, high-dimensional data. These attributes create substantial challenges for analyzing and reconstructing interactions, particularly when utilizing machine learning (ML) techniques. In this paper, we present a novel approach, called om2vec, that employs transformer-based variational autoencoders to efficiently represent the detected photon arrival time distributions of neutrino telescope events by learning compact and descriptive latent representations. We demonstrate that these latent representations offer enhanced flexibility and improved computational efficiency, thereby facilitating downstream tasks in data analysis.
翻译:中微子望远镜通过探测宇宙中极端环境下产生的粒子间的稀有相互作用来实现观测。其工作原理是在自然存在的透明介质中,以立方公里为尺度布设光传感器阵列。由于望远镜规模庞大且背景相互作用频率较高,这些设备会积累大量方差大、维度高的数据。这些特性给相互作用的分析与重建带来了显著挑战,尤其是在应用机器学习技术时。本文提出一种名为om2vec的新方法,该方法利用基于Transformer的变分自编码器,通过学习紧凑且具有描述性的潜在表示,高效地表征中微子望远镜事件中探测到的光子到达时间分布。我们证明,这些潜在表示具有更强的灵活性和更高的计算效率,从而有助于数据分析中的下游任务。