Cone-Beam Computed Tomography (CBCT) and Intraoral Scanning (IOS) are essential for digital dentistry, but annotated data scarcity limits automated solutions for pulp canal segmentation and cross-modal registration. To benchmark semi-supervised learning (SSL) in this domain, we organized the STSR 2025 Challenge at MICCAI 2025, featuring two tasks: (1) semi-supervised segmentation of teeth and pulp canals in CBCT, and (2) semi-supervised rigid registration of CBCT and IOS. We provided 60 labeled and 640 unlabeled IOS samples, plus 30 labeled and 250 unlabeled CBCT scans with varying resolutions and fields of view. The challenge attracted strong community participation, with top teams submitting open-source deep learning-based SSL solutions. For segmentation, leading methods used nnU-Net and Mamba-like State Space Models with pseudo-labeling and consistency regularization, achieving a Dice score of 0.967 and Instance Affinity of 0.738 on the hidden test set. For registration, effective approaches combined PointNetLK with differentiable SVD and geometric augmentation to handle modality gaps; hybrid neural-classical refinement enabled accurate alignment despite limited labels. All data and code are publicly available at https://github.com/ricoleehduu/STS-Challenge-2025 to ensure reproducibility.
翻译:锥形束计算机断层扫描(CBCT)与口内扫描(IOS)是数字化牙科诊疗的关键技术,但标注数据稀缺限制了牙髓管分割与跨模态配准自动化解决方案的发展。为建立该领域半监督学习(SSL)的基准,我们在MICCAI 2025会议上组织了STSR 2025挑战赛,设置两项任务:(1)CBCT影像中牙齿与牙髓管的半监督分割;(2)CBCT与IOS数据的半监督刚性配准。我们提供了60个标注样本与640个未标注IOS样本,以及30个标注样本与250个未标注CBCT扫描数据(涵盖不同分辨率与视野范围)。本次挑战赛获得学界广泛参与,顶尖团队提交了基于深度学习的开源SSL解决方案。在分割任务中,领先方法采用nnU-Net架构与类Mamba状态空间模型,结合伪标签生成与一致性正则化策略,在隐藏测试集上取得Dice分数0.967与实例亲和度0.738。在配准任务中,有效方案将PointNetLK与可微分奇异值分解及几何增强技术结合以应对模态差异;混合神经-经典优化方法在有限标注条件下实现了精确对齐。所有数据与代码已公开于https://github.com/ricoleehduu/STS-Challenge-2025以确保可复现性。