Automated software testing is integral to the software development process, streamlining workflows and ensuring product reliability. Visual testing, particularly for user interface (UI) and user experience (UX) validation, plays a vital role in maintaining software quality. However, conventional techniques such as pixel-wise comparison and region-based visual change detection often fail to capture contextual similarities, subtle variations, and spatial relationships between UI elements. In this paper, we propose a novel graph-based approach for context-aware visual change detection in software test automation. Our method leverages a machine learning model (YOLOv5) to detect UI controls from software screenshots and constructs a graph that models their contextual and spatial relationships. This graph structure is then used to identify correspondences between UI elements across software versions and to detect meaningful changes. The proposed method incorporates a recursive similarity computation that combines structural, visual, and textual cues, offering a robust and holistic model of UI changes. We evaluate our approach on a curated dataset of real-world software screenshots and demonstrate that it reliably detects both simple and complex UI changes. Our method significantly outperforms pixel-wise and region-based baselines, especially in scenarios requiring contextual understanding. We also discuss current limitations related to dataset diversity, baseline complexity, and model generalization, and outline planned future improvements. Overall, our work advances the state of the art in visual change detection and provides a practical solution for enhancing the reliability and maintainability of evolving software interfaces.
翻译:暂无翻译