In this paper we introduce sound and strongly complete axiomatizations for XPath with data constraints extended with hybrid operators. First, we present HXPath=, a multi-modal version of XPath with data, extended with nominals and the hybrid operator @. Then, we introduce an axiomatic system for HXPath=, and we prove it is strongly complete with respect to the class of abstract data models, i.e., data models in which data values are abstracted as equivalence relations. We prove a general completeness result similar to the one presented in, e.g., [BtC06] that ensures that certain extensions of the axiomatic system we introduce are also complete. The axiomatic systems that can be obtained in this way cover a large family of hybrid XPath languages over different classes of frames, and we present concrete examples. In addition, we investigate axiomatizations over the class of tree models, structures widely used in practice. We show that a strongly complete, finitary, first-order axiomatization of hybrid XPath over trees does not exist, and we propose two alternatives to deal with this issue. We finally introduce filtrations to investigate the status of decidability of the satisfiability problem for these languages.
翻译:在本文中,我们为 XPath 引入了健全且非常完整的异同法化, 其数据限制与混合操作者相扩展。 首先, 我们展示了HXPath=, 这是一种带有数据的多式 XPath 版本, 其数据扩展与名义和混合操作者@ 。 然后, 我们为 HXPath 推出一个非对称系统, 并且我们证明它对于抽象数据模型的类别来说是十分完整的, 即数据值被抽象作为等同关系的数据模型。 我们证明, 总体完整性的结果与( 例如, [BtC06] 中介绍的类似, 以确保我们引入的xPath 系统的某些多式扩展也完整。 这样可以获取的xPath 系统覆盖了不同类别的混合 XPath 语言的大型组合, 我们举出了具体的例子。 此外, 我们调查了树类模型的氧化化, 在实践中广泛使用的结构。 我们证明, 一个非常完整的、 和 高度完整的、 一级、 第一阶的 XPath 度化 一样, 确保我们采用的xpath 树的不易变现问题最终解决 Wedis 问题。