All known constructions of classical or quantum commitments require at least one-way functions. Are one-way functions really necessary for commitments? In this paper, we show that non-interactive quantum commitments (for classical messages) with computational hiding and statistical binding exist if pseudorandom quantum states exist. Pseudorandom quantum states are sets of quantum states that are efficiently generated but computationally indistinguishable from Haar random states [Z. Ji, Y.-K. Liu, and F. Song, CRYPTO 2018]. It is known that pseudorandom quantum states exist even if BQP=QMA (relative to a quantum oracle) [W. Kretschmer, TQC 2021], which means that pseudorandom quantum states can exist even if no quantum-secure classical cryptographic primitive exists. Our result therefore shows that quantum commitments can exist even if no quantum-secure classical cryptographic primitive exists. In particular, quantum commitments can exist even if no quantum-secure one-way function exists. We also show that one-time secure signatures with quantum public keys exist if pseudorandom quantum states exist. In the classical setting, the existence of signatures is equivalent to the existence of one-way functions. Our result, on the other hand, suggests that quantum signatures can exist even if no quantum-secure classical cryptographic primitive (including quantum-secure one-way functions) exists.
翻译:传统承诺或量子承诺的所有已知构建都至少需要单向功能。 单向函数对于承诺是否真正必要? 在本文中, 我们显示, 如果存在假冒的量子国家, 存在计算隐藏和统计约束的非互动量子承诺( 对于古典信息来说) 。 普塞多兰多姆量子状态是量子状态的组合, 高效生成, 但计算上无法与哈亚尔随机状态[ Z. Ji, Y. K. Liu, 和 F. Song, CRYPTO 2018] 区分开来。 即使 BQP ⁇ MA( 与量子或质子相对立) 也存在伪随机量子量子量子量子国家存在。 这意味着假冒量子国家即使不存在量子安全传统加密传统加密传统原型原型国家, 也存在一次性公用量子键安全签名( 如果存在伪冒的量子类固值国家, 也不存在。