Automatic building segmentation is an important task for satellite imagery analysis and scene understanding. Most existing segmentation methods focus on the case where the images are taken from directly overhead (i.e., low off-nadir/viewing angle). These methods often fail to provide accurate results on satellite images with larger off-nadir angles due to the higher noise level and lower spatial resolution. In this paper, we propose a method that is able to provide accurate building segmentation for satellite imagery captured from a large range of off-nadir angles. Based on Bayesian deep learning, we explicitly design our method to learn the data noise via aleatoric and epistemic uncertainty modeling. Satellite image metadata (e.g., off-nadir angle and ground sample distance) is also used in our model to further improve the result. We show that with uncertainty modeling and metadata injection, our method achieves better performance than the baseline method, especially for noisy images taken from large off-nadir angles.
翻译:自动构建分解是卫星图像分析和了解场景的一项重要任务。 大部分现有分解方法侧重于直接从间接上( 低离子/ 视角) 提取图像的情况。 由于噪音水平较高和空间分辨率较低,这些方法往往无法提供更大的离子角卫星图像的准确结果。 在本文中, 我们提出了一个能够为从大量离子角度采集的卫星图像提供准确的分解的方法。 根据贝耶斯人的深层学习, 我们明确设计了通过偏向和感应型不确定性建模来学习数据噪音的方法。 卫星图像元数据( 如离子角和地面样本距离)也用于我们的模型,以进一步改进结果。 我们显示,通过不确定性建模和元数据注入,我们的方法比基线方法的性能要好, 特别是从大型离子角度采集的噪音图像。