This year marks the eightieth anniversary of the invention of the finite element method (FEM). FEM has become the computational workhorse for engineering design analysis and scientific modeling of a wide range of physical processes, including material and structural mechanics, fluid flow and heat conduction, various biological processes for medical diagnosis and surgery planning, electromagnetics and semi-conductor circuit and chip design and analysis, additive manufacturing, i.e. virtually every conceivable problem that can be described by partial differential equations (PDEs). FEM has fundamentally revolutionized the way we do scientific modeling and engineering design, ranging from automobiles, aircraft, marine structures, bridges, highways, and high-rise buildings. Associated with the development of finite element methods has been the concurrent development of an engineering science discipline called computational mechanics, or computational science and engineering. In this paper, we present a historical perspective on the developments of finite element methods mainly focusing on its applications and related developments in solid and structural mechanics, with limited discussions to other fields in which it has made significant impact, such as fluid mechanics, heat transfer, and fluid-structure interaction. To have a complete storyline, we divide the development of the finite element method into four time periods: I. (1941-1965) Early years of FEM; II. (1966-1991) Golden age of FEM; III. (1992-2017) Large scale, industrial applications of FEM and development of material modeling, and IV (2018-) the state-of-the-art FEM technology for the current and future eras of FEM research. Note that this paper may not strictly follow the chronological order of FEM developments, because often time these developments were interwoven across different time periods.


翻译:今年是有限元素法发明八十周年纪念。FEM已经成为工程设计分析和科学模型制作的计算工作马,包括材料和结构机械、流体流和热导、医学诊断和手术规划的各种生物过程、电磁和半导体电路和芯片设计与分析、添加制造,即几乎每个可想象的问题都可以用部分差异方程式来描述。FEM从根本上改变了我们从汽车、飞机、海洋结构、桥梁、高速公路和高层建筑等一系列物理过程进行科学建模和科学模型设计的方式。与开发有限元素方法相关的是同时开发称为计算机械和外科手术规划、电磁和半导电路及芯片设计和分析的各种生物过程。在本文件中,我们从历史角度看待有限元素方法的发展,主要侧重于其应用以及固体和结构模型力学的相关发展。FEM在其他一些领域,例如流力机械、热传输、以及流体结构相互作用等严格意义上的科学模型设计方式。FEM在1991年的早期阶段发展(19-EM),这一阶段的硬质方法在F-1965年时期发展。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
145+阅读 · 2021年5月9日
《行为与认知机器人学》,241页pdf
专知会员服务
52+阅读 · 2021年4月11日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
Arxiv
0+阅读 · 2021年9月14日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
Top
微信扫码咨询专知VIP会员