In blind source separation of speech signals, the inherent imbalance in the source spectrum poses a challenge for methods that rely on single-source dominance for the estimation of the mixing matrix. We propose an algorithm based on the directional sparse filtering (DSF) framework that utilizes the Lehmer mean with learnable weights to adaptively account for source imbalance. Performance evaluation in multiple real acoustic environments show improvements in source separation compared to the baseline methods.


翻译:在盲源分隔语言信号方面,源谱的内在不平衡对依靠单一来源主导来估计混合矩阵的方法提出了挑战。我们建议采用基于方向性稀疏过滤框架的算法,即利用莱默(Lehmer)的平均值,以可学习的权重来适应性地说明源的不平衡。在多种真实的声学环境中的绩效评估显示,与基线方法相比,源的分离有所改善。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
167+阅读 · 2020年4月26日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
架构文摘
3+阅读 · 2019年4月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
架构文摘
3+阅读 · 2019年4月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Top
微信扫码咨询专知VIP会员