Entrainment of movement to a periodic stimulus is a characteristic intelligent behaviour in humans and an important goal for adaptive robotics. We demonstrate a quadruped central pattern generator (CPG), consisting of modified Matsuoka neurons, that spontaneously adjusts its period of oscillation to that of a periodic input signal. This is done by simple forcing, with the aid of a filtering network as well as a neural model with tonic input-dependent oscillation period. We first use the NSGA3 algorithm to evolve the CPG parameters, using separate fitness functions for period tunability, limb homogeneity and gait stability. Four CPGs, maximizing different weighted averages of the fitness functions, are then selected from the Pareto front and each is used as a basis for optimizing a filter network. Different numbers of neurons are tested for each filter network. We find that period tunability in particular facilitates robust entrainment, that bounding gaits entrain more easily than walking gaits, and that more neurons in the filter network are beneficial for pre-processing input signals. The system that we present can be used in conjunction with sensory feedback to allow low-level adaptive and robust behaviour in walking robots.
翻译:向周期刺激运动的整合是人类的一种典型智能行为,是适应性机器人的一个重要目标。我们展示了由改良的松冈神经元组成的四倍中央模式生成器,它自发调整其振动期,使之适应定期输入信号。这是通过简单的强制手段,在过滤网络的帮助下,以及带有耐性输入依赖振动期的神经模型的过滤网络的帮助下,通过使用耐性输入-振荡期来进行。我们首先使用NSGA3算法来发展CPG参数,利用对耐用期金枪鱼、肢同质和运动稳定性的单独健身功能。四个CPG,将健身功能的不同加权平均值最大化,然后从Pareto前方挑选出来,每种都用作优化过滤网络的基础。不同数量的神经元在每一个过滤网络上都经过测试。我们发现,这段期间的耐养度特别有利于强的内向,比走路更容易捆绑,而且过滤网络中更多的神经元对预处理前输入信号很有帮助。我们介绍的系统可以与感官之间的适应性反应。