This paper investigates the impact of memory orientation on the bias pattern of SRAM-based PUFs. We designed and fabricated a 65nm CMOS chip that contains eleven SRAM macros that exercise different memory- and chip-level parameters. At the memory level, several parameters passed to the SRAM compiler are considered, including the number of addresses, the number of words, the aspect ratio, and the chosen bitcell. Chip-level decisions are considered during the floorplan, including the location and rotation of each SRAM macro in the testchip. In this study, we conduct a comprehensive analysis of different memory orientations and their effect on the biasing direction. Physical measurements performed on 50 fabricated chips revealed that specific memory orientations, namely R270 and MY90, exhibit a distinct negative biasing direction compared to other orientations. Importantly, this biasing direction remains consistent regardless of memory type, column mux ratio, memory size, or the utilization of SRAMs with different bitcells. Overall, this study highlights the significance of careful physical implementation and memory orientation selection in designing SRAM-based PUFs. Our findings can guide designers in the selection of SRAM memories with properties that make for better PUFs that potentially require less error correction effort to compensate for instability.
翻译:暂无翻译